Molecular and Cellular Pathobiology A Rare Polymorphic Variant of NBS1 Reduces DNA Repair Activity and Elevates Chromosomal Instability
نویسندگان
چکیده
Failure to expeditiously repair DNA at sites of double-strand breaks (DSB) ultimately is an important etiologic factor in cancer development. NBS1 plays an important role in the cellular response to DSB damage. A rare polymorphic variant of NBS1 that resulted in an isoleucine to valine substitution at amino acid position 171 (I171V) was first identified in childhood acute lymphoblastic leukemia. This polymorphic variant is located in the N-terminal region that interacts with other DNA repair factors. In earlier work, we had identified a remarkable number of structural chromosomal aberrations in a patient with pediatric aplastic anemia with a homozygous polymorphic variant of NBS1-I171V; however, it was unclear whether this variant affected DSB repair activity or chromosomal instability. In this report, we demonstrate that NBS1-I171V reduces DSB repair activity through a loss of association with the DNA repair factor MDC1. Furthermore, we found that heterozygosity in this polymorphic variant was associated with breast cancer risk. Finally, we showed that this variant exerted a dominant-negative effect on wild-type NBS1, attenuating DSB repair efficiency and elevating chromosomal instability. Our findings offer evidence that the failure of DNA repair leading to chromosomal instability has a causal impact on the risk of breast cancer development. Cancer Res; 74(14); 1–9. 2014 AACR.
منابع مشابه
A rare polymorphic variant of NBS1 reduces DNA repair activity and elevates chromosomal instability.
Failure to expeditiously repair DNA at sites of double-strand breaks (DSB) ultimately is an important etiologic factor in cancer development. NBS1 plays an important role in the cellular response to DSB damage. A rare polymorphic variant of NBS1 that resulted in an isoleucine to valine substitution at amino acid position 171 (I171V) was first identified in childhood acute lymphoblastic leukemia...
متن کاملThe fission yeast Rad32 (Mre11)-Rad50-Nbs1 complex is required for the S-phase DNA damage checkpoint.
Mre11, Rad50, and Nbs1 form a conserved heterotrimeric complex that is involved in recombination and DNA damage checkpoints. Mutations in this complex disrupt the S-phase DNA damage checkpoint, the checkpoint which slows replication in response to DNA damage, and cause chromosome instability and cancer in humans. However, how these proteins function and specifically where they act in the checkp...
متن کاملMolecular pathogenesis of Fanconi anemia: recent progress.
A rare genetic disease, Fanconi anemia (FA), now attracts broader attention from cancer biologists and basic researchers in the DNA repair and ubiquitin biology fields as well as from hematologists. FA is a chromosome instability syndrome characterized by childhood-onset aplastic anemia, cancer or leukemia susceptibility, and cellular hypersensitivity to DNA crosslinking agents. Identification ...
متن کاملExpression pattern of the Nijmegen breakage syndrome gene, Nbs1, during murine development.
The Nijmegen breakage syndrome (NBS; MIM 251260), is an autosomal recessive disease characterized by microcephaly, growth retardation, immuno-deficiency and cancer predisposition. NBS cells show spontaneous chromosomal instability and hypersensitivity to ionizing radiation in combination with radioresistant DNA synthesis. At the cellular level, NBS has some features in common with ataxia telean...
متن کاملAssociation of DNA-PK activity and radiation-induced NBS1 foci formation in lymphocytes with clinical malignancy in breast cancer patients.
DNA double-strand break (DSB) is one of the most deleterious lesions induced by DNA damaging agents. DSB repair pathway is implicated in maintaining genomic integrity via suppression of genetic instability and neoplastic transformation. DNA-dependent protein kinase (DNA-PK) has a pivotal role in DNA DSB repair. The Nijmegen breakage syndrome protein (NBS1), essential for DSB repair, re-localize...
متن کامل